
Дехтярёв Арсений

Расширение TLS 1.3: extended_key_update
Проблема
Протокол Transport Layer Security (TLS) позволяет обеспечить
конфиденциальность, целостность и аутентичность передаваемых данных.
Несмотря на важные усовершенствования, в оригинальной спецификации TLS
1.3 стандартный механизм обновления (Key Update) не предполагает
использования дополнительной энтропии (Fresh Entropy) через новый обмен
ключами, что ограничивает его применимость в сценариях с длительными
сессиями. В ответ на такие ограничения был разработан проект расширения под
названием extended_key_update, целью которого является предоставление
механизма защиты от чтения "вперед" (восстановление после компорометации,
Post-Compromise Security) путем использования протокола Диффи--Хеллмана
при обновлении ключей.
Стандартный механизм обновления ключей в TLS 1.3 позволяет сторонам
обновлять симметричные ключи, используемые для защиты данных после
завершения Handshake-фазы. Однако этот механизм основан на производной
предыдущих ключей и не включает в себя дополнительной энтропии, что
означает, что компрометация текущих ключей может поставить под угрозу все
последующие ключи и защиту сессии. Это особенно актуально для технологий
с долгоживущими сессиями, таких как интернет вещей (IoT).
Концепт решения
Расширение extended_key_update предлагает механизм обновления ключей,
включающий новый обмен ключами на основе протокола Диффи-Хеллмана, что
позволяет добавить энтропию и восстановить безопасность даже после
временной компрометации текущих ключей трафика. Идея заключается в том,
что стороны сессии периодически инициируют обмен новыми ключами в
активной сессии, аналогично первоначальному Handshake-обмену, но без
необходимости прерывать существующие защищённые каналы или повторно
выполнять весь Handshake.
Основная цель такого механизма - ограничить временное окно действия
скомпрометированных ключей и заставить потенциального злоумышленника
проводить новые активные атаки для каждого цикла обновления ключей, что
значительно повышает стоимость и сложность атаки в целом.
Детали решения
Оба участника сессии договариваются о поддержке расширения ещё на этапе
ClientHello и EncryptedExtensions, используя механизм TLS-флагов. Если сервер

не поддерживает расширение extended_key_update, тогда он игнорирует флаг и
использует стандартный механизм обновления ключей в TLS 1.3.
Расширение определяет новый тип Handshake-сообщения ExtendedKeyUpdate
(EKU), который включает три подтипа:

 key_update_request — инициирует обмен новым ключевым материалом и
содержит структуру KeyShareEntry, как и в обычном Handshake для
обмена DH-ключами;

 key_update_response — ответ на запрос, также содержит KeyShareEntry;
 new_key_update — служебное сообщение для переключения на новые

ключи после успешного обмена.
Каждое сообщение подписывается или шифруется в контексте текущих ключей,
что обеспечивает целостность обмена.
Процесс работы расширения extended_key_update можно разделить на
несколько шагов:
1. Сторона A: Инициатор (клиент или сервер) генерирует одноразовый

открытый ключ и отправляет сообщение EKU(key_update_request) с
данными ключа в структуре KeyShareEntry.

2. Сторона B: Получив сообщение EKU(key_update_request), отвечает
сообщением EKU(key_update_response) со своим одноразовым открытым
ключом в KeyShareEntry. После отправления сообщения сторона
вычисляет общий секрет (Shared Secret) на основе двух открытых ключей,
после чего вычисляет новые подчинённые ключи (Traffic Secrets).

3. Сторона A: Получает EKU(key_update_response), вычисляет общий
секрет, после чего вычисляет новые подчинённые ключи и отправляет
пустое сообщение EKU(new_key_update), сигнализируя о готовности
переключиться на новые ключи. После отправки сообщения сторона
обновляет собственные ключи записи.

4. Сторона B: После получения EKU(new_key_update) обновляет свои
ключи чтения, затем отправляет инициатору сообщение
EKU(new_key_update). После отправки сообщения обновляет свои ключи
записи.

5. Сторона A: Окончательно обновляет свои ключи чтения и на этом
завершает алгоритм обновление ключей.

Алгоритм построения ключей расширения включает в себя:
1. Генерация нового главного секрета (Main Secret, Master Secret). Новый

главный секрет формируется на основе двух компонентов: производное
значение от предыдущего главного секрета (используется как “соль”) и

общий секрет полученный в результате протокола Диффи-Хеллмана. Эта
операция выполняется с помощью функции HKDF-Extract.

2. Привязка к контексту. На этапе вычисления подчинённых ключей
происходит привязка к истории обмена. В функцию Derive-Secret в
качестве контекста передаётся конкатенация сообщений обмена
EKU(key_update_request) и EKU(key_update_response). Это гарантирует
целостность сессии, так как итоговые ключи неразрывно связаны с
конкретными сообщениями, которыми обменялись стороны. На основе
этих ключей строят ключи защиты прикладных данных, как описано в
стандарте протокола TLS 1.3.

Дополнительно
На момент написания реферата это расширение находится в статусе “Active
Internet-Draft”, ему не присвоен номер RFC и в будущем описание расширения
может измениться.
Источники

1. RFC 8446: The Transport Layer Security (TLS) Protocol Version 1.3
2. Extended Key Update for Transport Layer Security (TLS) 1.3

https://datatracker.ietf.org/doc/draft-ietf-tls-extended-key-update/

https://datatracker.ietf.org/doc/draft-ietf-tls-extended-key-update/

	Дехтярёв Арсений
	Расширение TLS 1.3: extended_key_update

