28 Факторизация

28.1 Задача факторизации

Мы установили, что одним из методов решения задачи RSA является факторизация модуля n с последующим определением $\varphi(n)$ и $d=e^{-1} \bmod \varphi(n)$.

Напомним, что проблема факторизации ставится следующим образом.

Задача 28.1 (Factor). Индивидуальная задача: n- составное. Ответ: $d:d\mid n,d\neq 1,n.$

Пример 28.1 (RSA-k). На сайте http://www.rsa.com размещены ϵ ызовы — задачи факторизации чисел RSA-k. Каждое такое число n состоит из k десятичных разрядов и является произведением двух простых p и q, которые

- сравнимы с 2 по модулю 3, поэтому n можно использовать для шифрования по RSA с открытой экспонентой e=3:
- генерировались с использованием теста Рабина Миллера на простоту;
- уничтожались сразу после вычисления n = pq.

На сегодняшний день даны ответы на следующие вызовы (MIPS — миллион инструкций в секунду):

Число	Дата	Сложность, MIPS-лет	Алгоритм	
RSA-100	апрель 1991	7	QS	
RSA-110	апрель 1992	75	QS	
RSA-120	июнь 1993	830	QS	
RSA-129	апрель 1994	5000	QS	
RSA-130	апрель 1996	500	GNFS	_
RSA-140	февраль 1999	2000	GNFS	
RSA-155	август 1999	8000	GNFS	
RSA-200 (663 бита)	май 2005	$pprox 75$ лет работы $2.2 \mathrm{Ghz}$ Opteron	GNFS	
RSA-768 (двоичные разряды)	декабрь 2009	pprox 2000 лет работы 2.2Ghz Opteron	GNFS	
RSA-240 (795 битов)	декабрь 2019	pprox 4000 лет работы 2.1Ghz Intel Xeon Gold 6130	GNFS	
RSA-250 (829 битов)	февраль 2020	pprox 2700 лет работы 2.1Ghz Intel Xeon Gold 6130	GNFS	

Перейдем к рассмотрению алгоритмов факторизации. Отметим, что алгоритм пробного деления n на числа от 2 до $\lfloor \sqrt{n} \rfloor$ выполняется за экспоненциальное время $O(\sqrt{n} \log^2 n)$. Мы рассмотрим два изящных алгоритма, которые выполняются за меньшее время.

28.2 Алгоритм p-1

В 1974 году Поллард предложил алгоритм факторизации, который может выполняться за малое время, если для некоторого простого делителя p числа n простые делители числа p-1 невелики, точнее являются B-гладкими для небольшого B.

Определение 28.1. Число m является B-гладким, если все простые делители m не превосходят $B \in \mathbb{N}$. Множество S_B , составленное из всех простых чисел, не превосходящих B, называется факторной базой. \square

АЛГОРИТМ p-1

 $Bxo\partial$: n — нечетное составное.

Buxod: d — нетривиальный делитель n или \bot — делитель не найден.

Шаги:

- 1. Выбрать натуральное B.
- $2. \ a \leftarrow 2.$
- 3. Для $q \in S_B$ выполнить:
 - а) $e_q \leftarrow \lfloor \log_q n \rfloor$ (e_q есть максимальное целое такое, что $q^{e_q} \leqslant n$);

- б) $a \leftarrow a^{q^{e_q}} \mod n$.
- 4. $d \leftarrow (a-1, n)$.
- 5. Если $d \notin \{1, n\}$, то вернуть d. Иначе \bot .

 $\emph{Идея}.$ Обозначим $Q=\prod_{q\in S_B}q^{e_q}$ и пусть $d=(2^Q-1,n).$

Предположим, что p — простой делитель n такой, что число p-1 является B-гладким. Тогда:

- 1) (p-1) | Q (если $q^e | p-1$, то $q^e | q^{e_q} | Q$);
- 2) по малой теореме Ферма $2^Q \equiv 2^{p-1} \equiv 1 \pmod{p}$ и $p \mid (2^Q 1)$;
- 3) $p \mid n$.

Из 2) и 3) следует, что $p \mid d = (2^Q - 1, n)$. Поэтому если $d \neq n$, то мы получаем нетривиальный делитель n. Сложсность алгоритма: $|S_B| = O(B/\log B)$ (теорема о распределении простых) и требуется выполнить $O(B/\log B)$ возведений в степени q^{eq} по модулю n или $O(B\log^3 n)$ операций.

Упражнение 28.1. Для метода p-1 проанализировать случаи, когда d не является собственным делителем n. Доказать:

- 1) если d = 1, то p 1 не является B-гладким ни для одного простого делителя p числа n;
- 2) если d=n, то p-1 является B-гладким для всякого простого делителя p числа n.

Пример 28.2. Рассмотрим число n=1846202297=pq, где $p=37951,\ q=48647$. Имеем: $p-1=2\cdot 3\cdot 5^2\cdot 11\cdot 23,\ q-1=2\cdot 13\cdot 1871$. Поэтому d=1 при $B<11,\ d=p$ при $23\leqslant B<1871$ и d=n при $B\geqslant 1871$.

28.3 ρ -метод

В 1975 году Поллард предложил еще один алгоритм факторизации — ρ -метод.

Идея алгоритма. Проведем следующие построения:

1. Пусть наудачу выбрано преобразование $\varphi \colon \mathbb{Z}_n \to \mathbb{Z}_n$, выбран произвольный элемент $x_0 \in \mathbb{Z}_n$ и определена последовательность

$$x_t = \varphi(x_{t-1}), \quad t = 1, 2, \dots$$

Можно сказать, что «частицы» x_t размещаются случайно независимо равновероятно по n «ячейкам» — элементам \mathbb{Z}_n . Согласно парадоксу «дней рождения» (см. § 26), коллизии начнут происходить при $t = O(\sqrt{n})$ в среднем.

2. Пусть p — минимальный (неизвестный) простой делитель n. Данному p поставим в соответствие (ненаблюдаемую) последовательность

$$y_t = x_t \mod p, \quad t = 0, 1, 2, \dots$$

Теперь «частицы» y_t размещаются случайно независимо равновероятно по p «ячейкам» — элементам множества $\{0,1,\ldots,p-1\}$. Поэтому коллизии начнут происходить при $t=O(\sqrt{p})$ в среднем. Коллизия

$$y_t = y_{\tau}, \quad t < \tau,$$

означает, что траектория последовательности y_0, \ldots, y_{τ} принимает форму буквы ρ , что и обуславливает название метода факторизации.

Поскольку $p \leqslant \sqrt{n}$, то с высокой вероятностью $x_t \neq x_{\tau}$.

3. Совпадение $y_t = y_\tau$ означает, что

$$p \mid (y_{\tau} - y_t) \Rightarrow p \mid (x_{\tau} - x_t) \Rightarrow p \mid (x_{\tau} - x_t, n).$$

Таким образом, если $x_t \neq x_\tau$, то $(x_\tau - x_t, n)$ — нетривиальный делитель n.

Мы свели задачу поиска делителя числа n к задаче поиска коллизии в (ненаблюдаемой!) последовательности (y_t) . Для поиска коллизии можно воспользоваться алгоритмом Брента в котором прямая проверка $y_t \stackrel{?}{=} y_{\tau}$ заменяется на косвенную проверку $(x_t - x_{\tau}, n) \stackrel{?}{>} 1$.

\mathbf{A} лгоритм ρ -метод

Bxo ∂ : $n \in \mathbb{N}$.

 Π араметры: φ .

Bwxod: d — нетривиальный делитель n или \bot — делитель не найден.

Шаги:

- 1. $A \stackrel{R}{\leftarrow} \mathbb{Z}_n$.
- 2. Для $i = 0, 1, \dots$ выполнить:
 - 1) $B \leftarrow \varphi(A)$;
 - 2) для $r = 1, \ldots, 2^i$:
 - a) $d \leftarrow (A B, n)$;
 - б) если d = n, то возвратить \bot (коллизия в (x_t));
 - в) если d > 1, то возвратить d;
 - Γ) $B \leftarrow \varphi(B)$.
 - 3) $A \leftarrow B$.

Сложность алгоритма. Для определения нетривиального делителя требуется вычислить значения φ порядка $O(\sqrt{p})$ раз, где p — наименьший простой делитель n. Остается сказать, что на практике выбирают простую функцию φ , которая, впрочем ведет себя как случайная функция (напр., $\varphi(x) = (x^2 + 1) \bmod n$). В этом случае алгоритм работает за время $O(\sqrt{p}\log^2 n)$.

28.4 Выбор модуля RSA

Сложность ρ -метода и алгоритма $p-1-O(\sqrt{p}\log^2 n)$ и $O(B\log^3 n)$ операций соответственно. Здесь p- наименьший простой делитель $n,\,B-$ наименьший по простым $p\mid n$ из наибольших простых делителей числа p-1 (факторная база S_B должна содержать все простые делители p-1). Существует «близнец» алгоритма p-1- алгоритм p+1, сложность которого определяется наибольшим простым делителем не числа p-1, а числа p+1.

При выборе простых делителей p и q модуля RSA n=pq руководствуются следующими правилами:

- 1) $\log p \approx \log q$ (усложняется факторизация n по ρ -методу);
- 2) число |p-q| должно быть большим (в противном случае для факторизации n можно применить метод Φ ерма);
- 3) числа p и q должны быть сильно простыми, p cuльно npocmoe, если:
 - а) p-1 имеет большой простой делитель r (усложняется факторизация n по методу p-1);
 - б) p+1 имеет большой простой делитель (усложняется факторизация по методу p+1);
 - в) r-1 имеет большой простой делитель (защита от циклических атак).

Такой выбор модуля n приводит к тому, что факторизация с помощью рассмотренных алгоритмов выполняется за субэкспоненциальное время (см. далее).