29 Дискретное логарифмирование

29.1 Метод больших-малых шагов

Пусть \mathbb{G} — циклическая группа, порожденная элементом g, т. е. $\mathbb{G} = \langle g \rangle$. Будем считать, что \mathbb{G} — группа порядка q, т. е. ord g = q.

Нас будут интересовать методы решения уравнения

$$g^x = y, \quad y \in \mathbb{G},$$

относительно $x \in \{0, 1, \dots, q-1\}$, т. е. методы определения дискретного логарифма (индекса) $\log_q y$.

Пример 29.1. В схеме ЭльГамаля \mathbb{G} — подгруппа \mathbb{F}_p^* , $\langle p,g,b \rangle$ — открытый ключ, $\langle a \rangle$ — личный ключ и задача дискретного логарифмирования превращается в задачу определения личного ключа по открытому.

Пусть $m = \lceil \sqrt{q} \rceil$. Метод больших-малых шагов состоит в отыскании совпадения элемента последовательности

$$1, g, g^2, \dots, g^{m-1},$$

с элементом последовательности

$$y, yg^{-m}, yg^{-2m}, \dots, yg^{-(m-1)m}$$
.

Если найдено совпадение $g^j = yg^{-im}$, то $g^{im+j} = y$ и $\log_a y = (im+j) \bmod q$.

Алгоритм Больших — малых шагов

 $Bxo\partial$: (описание \mathbb{G}, g, y).

 $Bыход: \log_g y.$

Шаги алгоритма:

- 1. $m \leftarrow \lceil \sqrt{q} \rceil$.
- 2. Построить массив пар $(j, g^j), j = 0, 1, \dots, m-1$. Отсортировать пары по второму элементу.
- 3. Установить $c \leftarrow y$.
- 4. Для i = 0, ..., m-1 выполнить
 - (1) искать совпадение $c \stackrel{?}{=} g^{j}$ в массиве;
 - (2) если найдено совпадение $c = g^{j}$, то вернуть im + j;
 - (3) $c \leftarrow c \cdot q^{-m}$.

Сложсность. Требуется выполнить $O(\sqrt{q})$ групповых операций и $O(\sqrt{q}\log q)$ сравнений элементов группы при сортировке на шаге 1 и поиске на шаге 4.1. Если одна групповая операция является более трудоемкой, чем $\log q$ сравнений, то сложность алгоритма $O(\sqrt{q})$ групповых операций.

29.2 ρ -метод

Мы уже знакомы с ρ -методом факторизации. Рассмотрим теперь ρ -метод логарифмирования, который был предложен Поллардом в 1978 году.

Идея алгоритма. Проведем следующие построения:

- 1. Разобъем G на подмножества $G_1,\,G_2$ и G_3 примерно равной мощности.
- 2. Построим функцию $\varphi \colon G \to G$,

$$\varphi(z) = \begin{cases} yz, & z \in G_1, \\ z^2, & z \in G_2, \\ gz, & z \in G_3. \end{cases}$$

3. Выберем $z_0 = 1$ (1 — единица G) и построим последовательность $z_t = \varphi(z_{t-1}), t = 1, 2, \ldots$

Все элементы последовательности имеют вид $z_t = g^{u_t} y^{v_t}$. Если мы нашли совпадение $z_t = z_{\tau}, \, t < \tau$, то

$$g^{u_t} y^{v_t} = g^{u_\tau} y^{v_\tau} \Rightarrow y^{v_t - v_\tau} = g^{u_\tau - u_t} \Rightarrow (v_t - v_\tau) \log_q y \equiv (u_\tau - u_t) \pmod{q}.$$

Таким образом, если число $(v_t - v_\tau)$ обратимо по модулю q, то

$$\log_a y = (u_{\tau} - u_t)(v_t - v_{\tau})^{-1} \bmod q.$$

Шаги алгоритма. Для вычисления дискретного логарифма требуется определить элементы последовательности (z_t) и найти коллизию $z_t = z_{\tau}$ (можно воспользоваться алгоритмом Брента). Кроме этого, требуется знать числа u_t , v_t . Числа можно определять по следующим правилам:

$$(u_t, v_t) = \begin{cases} (u_{t-1}, v_{t-1} + 1) \bmod q, & z_{t-1} \in G_1, \\ (2u_{t-1}, 2v_{t-1}) \bmod q, & z_{t-1} \in G_2, \\ (u_{t-1} + 1, v_{t-1}) \bmod q, & z_{t-1} \in G_3. \end{cases}$$

Сложность алгоритма. Для определения дискретного логарифма требуется вычислить $O(\sqrt{q})$ элементов последовательности (z_t) , т. е. выполнить $O(\sqrt{q})$ групповых операций (сложения при определении последовательностей (u_t) , (v_t) менее трудоемки, чем групповые операции).

Пример 29.2. На сегодняшний день все серьезные достижения по решению задачи дискретного логарифмирования в группах точек эллиптических кривых (см. следующие лекции) получены с помощью ρ -метода. Компания Certicom в 1997 году объявила конкурсные ECDLP различной степени сложности. На сегодняшний день решено 10 задач из списка Certicom. Рекордное достижение — логарифмирование в группе, порядок которой является числом из 109 двоичных разрядов. В октябре 2009 года был начат эксперимент по дискретному логарифмированию в группе точек эллиптической кривой над полем $\mathbb{F}_{2^{131}}$. Порядок целевой группы является числом из 130 двоичных разрядов. Эксперимент продолжается. С его промежуточными результатами можно ознакомиться в Интернет по адресу http://ecc-challenge.info.

29.3 Метод Поллига — Хеллмана

Пусть $q = q_1 q_2$, $q_i > 1$, $(q_1, q_2) = 1$. Введем в рассмотрение элементы $g_1 = g^{q_2}$, $g_2 = g^{q_1}$ и пусть $\mathbb{G}_1 = \langle g_1 \rangle$, $\mathbb{G}_2 = \langle g_2 \rangle$. Имеем: ord $g_i = q_i$ и $|\mathbb{G}_i| = q_i$.

Будем искать решение уравнения $g^x = y$ в виде

$$x = x_2q_1 + x_1$$
, $0 \le x_2 < q_2$, $0 \le x_1 < q_1$.

Если $g^{x_2q_1+x_1}=y$, то

$$(g^{x_2q_1+x_1})^{q_2} = y^{q_2} \Rightarrow g^{x_1q_2} = y^{q_2} \Rightarrow g_1^{x_1} = y^{q_2}.$$

Поэтому можно поступить следующим образом:

- 1. Найти $x_1 = \log_{q_1} y^{q_2}$ в группе \mathbb{G}_1 .
- 2. Найти $x_2 = \log_{q_2} yg^{-x_1}$ в группе \mathbb{G}_2 .
- 3. Определить $x = x_2q_1 + x_1$.

Таким образом, для дискретного логарифмирования в \mathbb{G} требуется выполнить логарифмирование в группах \mathbb{G}_1 и \mathbb{G}_2 меньшего порядка и использовать несложные дополнительные вычисления.

Если порядок \mathbb{G}_i не является простым числом, то мы снова можем заменить логарифмирование в \mathbb{G}_i на логарифмирования в меньших группах и так далее.

При достижении группы порядка p^e , где p — простое число, дискретный логарифм записывается в виде числа в системе счисления по основанию p: $x = (x_{e-1} \dots x_1 x_0)_p$. Цифры числа определяются последовательно, от x_0 к x_{e-1} . Это можно сделать за время за время $e\sqrt{p}$.

В целом если $|\mathbb{G}|=\prod_{i=1}^s q_i^{e_i}$, то для определения $\log_q y$ потребуется выполнить

$$O\left(\sum_{i=1}^{s} \alpha_i \sqrt{q_i}\right)$$

групповых операций.

Пример 29.3. В первоначальном варианте своей схемы ЭльГамаль предлагал использовать в качестве g примитивный элемент \mathbb{F}_p^* , т. е. элемент порядка p-1. Если p-1 не имеет больших простых делителей, то с помощью метода Поллига — Хеллмана можно достаточно эффективно находить личный ключ $x = \log_g y$. Поэтому требование наличия у p-1 большого простого делителя q является весьма важным. Кроме этого, вместо примитивного элемента g можно использовать элемент порядка q, поскольку сложность логарифмирования при таком переходе уменьшается незначительно.

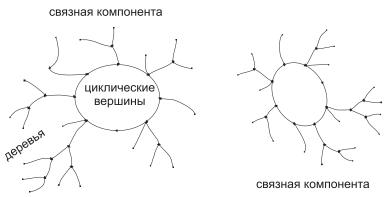
29.4 λ -метод

 λ -метод также был предложен Поллардом. Альтернативное название метода — метод *кенгуру*.

Идея. Пусть $S \subset \{0,1,\ldots,q-1\}$ и $h\colon G \to S$ — некоторая хэш-функция. Определим преобразование: $\varphi\colon G \to G, \quad z \mapsto z g^{h(z)}.$

Поставим в соответствие φ $\mathit{грa}\phi$, вершинами которого являются всевозможные элементы G: из каждой вершины $z \in G$ выходит ровно одна дуга, которая заканчивается в $\varphi(z)$.

Известно, что граф любого преобразования представляет собой набор censum s компонент. В свою очередь, каждая связная компонента представляет собой набор циклических вершин, к которым крепятся de-peebs.



Как и ρ -метод, λ -метод ориентирован на поиск коллизий в графе преобразования φ . В отличие от ρ -метода, поиск коллизий ведется не только в циклических вершинах графа, но и в вершинах деревьев.

Шаги алгоритма.

1. Выбрать $u_0 \in S$, вычислить $z_0 = g^{u_0}$ и построить последовательность

$$z_t = \varphi(z_{t-1}) = z_{t-1}g^{u_t}, \quad u_t = h(z_{t-1}), \quad t = 1, \dots, T.$$

Запомнить z_T и сумму $(u_0 + \ldots + u_T) \mod q$.

2. Выбрать $z_0^* = y = g^{v_0}$, где v_0 — неизвестный дискретный логарифм. Построить последовательность

$$z_t^* = \varphi(z_{t-1}^*) = z_{t-1}^* g^{v_t}, \quad v_t = h(z_{t-1}^*), \quad t = 1, 2, \dots,$$

и после определения очередного z_t^* проверять $z_t^* \stackrel{?}{=} z_T$.

3. Если совпадение найдено, то

$$v_0 + v_1 + \ldots + v_t \equiv u_0 + u_1 + \ldots + u_T \pmod{q} \Rightarrow v_0 = (u_0 + u_1 + \ldots + u_T - v_1 - \ldots - v_t) \bmod{q}.$$

Название алгоритма объясняется следующим образом: последовательность z_t объявляется траекторией *прирученного* кенгуру (мы знаем величины прыжков u_0, u_1, \ldots), а последовательность z_t^* считается траекторией $\partial u \kappa o ro$ кенгуру (мы не знаем величину первого прыжка v_0).

Сложность. Для определения дискретного логарифма также требуется выполнить $O(\sqrt{q})$ групповых операций.

Распараллеливание. Пусть для поиска дискретного логарифма используется не одно вычислительное устройство (машина Тьюринга) а *m* устройств. Во сколько раз мы можем уменьшить время поиска?

Оказывается, что для λ -метода время можно уменьшить в m раз, а для ρ -метода — только в \sqrt{m} раз. Суть распараллеливания λ -метода состоит в следующем:

- 1. Выбрать в G подмножество *различимых* элементов G^* такое, что принадлежность $g \in G^*$ можно проверить очень быстро (напр., элементы G кодируются бинарными строками, тогда элементы G^* это строки, которые начинаются с определенного префикса).
- 2. На отдельных машинах вести расчет траекторий ручных и диких кенгуру. Вести общий массив различимых элементов, которые достигли кенгуру.
- 3. Анализировать пересечение траекторий кенгуру в различимых точках и, при возможности, определять дискретный логарифм.