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Introduction
Let a discrete time series be observed which may be described by one of L finite

homogeneous Markov chains (2 ≤ L < ∞). These Markov chains specify L classes
of the observed time series. The classes are assumed to differ in parameters of the
Markov chains, i.e., in matrices of one-step transition probabilities. We consider
the problem of classification of the observed time series into one of these classes.

This problem is very topical in applications to medical diagnostics, classification
of DNA sequences [1, 21], technical diagnostics (e.g., faulty link detection in com-
munication networks [9]), sequential detection of an abrupt change in the Markov
chain distribution [16], intrusion detection in computer networks [8], etc.) In prac-
tice, this classification problem is often accompanied by some prior uncertainty:
unknown parameters, missing values, etc. [6, 12].

The classification problem under consideration includes the construction of an
optimal in some sense decision rule (DR) for classification of the observed time
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series into one of L classes, and also the evaluation of the DR performance. The
performance of a DR is usually described by the misclassification probability, which
is also called the risk of classification [10, 15].

If the parameters of the classes are known, the Bayesian decision rule (BDR),
which minimizes the misclassification probability, can be easily constructed (see,
e.g., [9, 11]) using the traditional technique of discriminant analysis [10, 15]. But
the evaluation of the exact misclassification probability of the BDR is a serious
problem, that is why the asymptotic analysis of the misclassification probability
for the BDR is needed. There are two main approaches in asymptotic analysis of
the misclassification probability. According to the first approach, the parameters of
the classes are fixed and the rate of convergence of the misclassification probability
to zero is investigated using the large deviations technique as the length of the
observed time series goes to infinity [11, 17, 19]. According to the second approach,
the classes are assumed to be contiguous [5, 13] (or “close” [4]) as the length of the
observed time series goes to infinity. Then the limiting value of the misclassification
probability is sought, which is not equal to zero because of contiguity of the classes.
The second approach is more general and seems to be more adequate for practice as
the hardness of discrimination between classes is adapted to the size of experimental
data [4, 5, 13]. The contiguous classes approach has not been applied in discriminant
analysis of Markov chains before. The case of unknown parameters of the classes
as well as the case of missing values in discrimination of Markov chains have not
been investigated so far.

In the paper we construct the decision rules for classification of stationary finite
Markov chains for three levels of prior uncertainty: known parameters, unknown
parameters, missing values. For these three cases we construct and analyze asymp-
totic expansions of the misclassification probability using the contiguous classes
approach.

1. Mathematical Model
Let a sequence of discrete random variables {Xt}, Xt ∈ A = {1, 2, . . . , N},

t = 1, 2, . . . , be observed; it belongs to one of L classes Ω1, Ω2, . . . , ΩL with prior
probabilities q1, q2, . . . , qL ∈ (0, 1) (L ≥ 2, q1+ . . .+qL = 1). A sequence of class Ωl

is a homogeneous finite Markov chain specified by the vector of initial probabilities
π(l) and the matrix of one-step transition probabilities P (l):

(1)
π(l) = (π(l)

i ) : π
(l)
i = Pr{X1 = i | Ωl},

P (l) = (p(l)
ij ) : p

(l)
ij = Pr{Xt = j | Xt−1 = i,Ωl}, i, j ∈ A,

where l ∈ {1, . . . , L}. The Markov chains of classes {Ωl} are assumed to be sta-
tionary and ergodic; the vector π(l) is the stationary distribution for the Markov
chain of class Ωl with π

(l)
i > 0, i ∈ A. Excluding the singularities, we will assume

that all one-step transitions have nonzero probabilities:

(2) p
(l)
ij > 0, i, j ∈ A, l ∈ {1, . . . , L}.

We suppose that the classes {Ωl} differ in the matrices of one-step transition prob-
abilities {P (l)}.
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Let a realization of length n from the class Ων be observed:

(3) X = (x1, x2, . . . , xn), xt ∈ A, t ∈ {1, . . . , n},

where ν ∈ {1, 2, . . . , L} is an unobservable random classification indicator. The
probability distribution of the random variable ν is determined by the prior prob-
abilities Pr{ν = l} = ql, l ∈ {1, . . . , L}.

We consider the problem of finding a decision rule d for classification of the
observed realization X into one of the classes {Ωl}, d = d(X), X ∈ An, d ∈
{1, 2, . . . , L}. The performance of a DR d(· ) is described by the misclassification
probability:

(4) r = Pr{d(X) 6= ν}.

2. Bayesian Decision Rule and its Performance
A decision rule dBDR(·) that minimizes the classification risk r = r(d(·)) (in our

case, the misclassification probability (4)) for known values of the parameters is
called the Bayesian decision rule (BDR) [10, 15]. We will construct the BDR for the
model (1), (3) and find the asymptotic value of the misclassification probability (4).

Define statistical estimators of the (L×L)-matrix of bivariate probabilities Π =
(Πij), Πij = Pr{xt = i, xt+1 = j}, i, j ∈ A, calculated from the realization (3):

Π̂ = (Π̂ij) : Π̂ij =
nij

n
, nij =

n−1∑
t=1

I{xt = i, xt+1 = j}, i, j ∈ A,

where I{A} is the indicator function of the event A. Because of the norming condi-
tion for the probabilities {Πij} we consider only {Πij , (i, j) ∈ AΠ} as unknown pa-
rameters to be estimated, where AΠ = {A2 \{(N, N)}}; ΠNN = 1−∑

(i,j)∈AΠ
Πij .

Theorem 1. The BDR for classification of the Markov chains for the model
(1), (3) is:

(5) dBDR(X) = arg max
1≤l≤L

(
1
n

log ql +
1
n

log π(l)
x1

+
∑

i,j∈A
Π̂ij log p

(l)
ij

)
, X ∈ An.

Proof. Using the log-likelihood function of the parameters (π(l), P (l)) for the
realization X in the BDR for discrete distributions [10] we obtain (5). ¤

Corollary 1. In the case of two classes (L = 2) the BDR (5) is:

dBDR(X) = 1 (Λ(X)) + 1, X ∈ An,(6)

Λ(X) = Λ∗(X) +
1
n

log
q2

q1
+

1
n

log
π

(2)
x1

π
(1)
x1

, Λ∗(X) =
∑

i,j∈A
Π̂ij log

p
(2)
ij

p
(1)
ij

,(7)

where Λ(X) is the discriminant function based on the log-likelihood functions of the
parameters of the classes Ω1, Ω2; 1 (x) = I{x > 0} is the Heaviside function.
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Now we explore the misclassification probability (4) for the case of two classes
(L = 2). Define the contiguous classes asymptotics [4] for the model (1):

(8) p
(2)
ij = p

(1)
ij (1 + bijε), ε → 0, p

(2)
ij → p

(1)
ij , i, j ∈ A,

where {bij} are some constant weight coefficients
( ∑

j∈A p
(1)
ij bij = 0, i, j ∈ A)

, ε is
the “contiguity” parameter.

We introduce the following auxiliary variables:

al = (−1)l
∑

i∈A
π

(l)
i

∑

j∈A
p
(l)
ij log

p
(2)
ij

p
(1)
ij

> 0,(9)

s
(l)
ijuv = π

(l)
i p

(l)
ij (δiuδjv − π(l)

u p(l)
uv) + p

(l)
ij p(l)

uv(π(l)
i c

(l)
ju + π(l)

u c
(l)
vi ),(10)

c
(l)
ju =

∞∑

k=0

(p(l)
ju(k)− π(l)

u ) < ∞,

σ
(l)
ijuv =

δiu

π
(l)
i

(δjvp
(l)
ij − p

(l)
ij p(l)

uv), i, j, u, v ∈ A, l ∈ {1, 2},(11)

where al is the weighted sum of the Kullback–Leibler information [2] for discrimina-
tion between P (1) and P (2) (the multiplier (−1)l ensures that al > 0); {s(l)

ijuv} and

{σ(l)
ijuv} are some covariances, which will be explained in the proofs of Theorems 2

and 3; p
(l)
ju(k) = ((P (l))k)ju is the probability of the k-step transition from the state

j to the state u of the Markov chain of class Ωl; the series for c
(l)
ju converges at an

exponential rate and can be easily computed; δij is the Kronecker delta.
The following lemma concerns the behavior of the auxiliary variables (9)–(11)

and the stationary distribution in the contiguous classes asymptotics (8).

Lemma 1. Under the assumption of contiguous classes (8) of stationary Markov
chains the following expansions hold:

π
(2)
j = π

(1)
j

(
1 + εhj + O

(
ε2

))
; σ

(2)
ijuv = σ

(1)
ijuv + O (ε) , s

(2)
ijuv → s

(1)
ijuv,

al =
ε2

2

∑

i,j∈A
b2
ijπ

(l)
i p

(1)
ij + O

(
ε3

)
, l ∈ {1, 2}, a2

a1
→ 1,

where |hj | < +∞, i, j, u, v ∈ A.

Proof. The first statement is based on the well-known result on error in solution
of a system of linear algebraic equations under matrix distortions [7]. The other
statements follow from the Taylor formula. ¤

Now we evaluate the misclassification probability (4) in the contiguous classes
asymptotics (8) with “contiguity” parameter ε = O

(
n−1/2

)
. Denote

µ =
∑

i,j∈A
b2
ijπ

(1)
i p

(1)
ij , V =

∑

(i,j),(u,v)∈AΠ

(bij − bNN )s(1)
ijuv(buv − bNN ) > 0,(12)

∆l = ∆ + (−1)l 2 log(q2/q1)
c
√

V
, ∆ =

cµ√
V

> 0, l ∈ {1, 2},(13)

where the covariances {s(1)
ijuv} are defined in (10)
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Theorem 2. For increasing number of observations and two contiguous
classes (8),

n →∞, ε =
c√
n
→ 0, 0 < c < ∞,

the misclassification probability (4) of the BDR (6) has the limit

r0 → r̃0 = q1Φ
(
− ∆1

2

)
+ q2Φ

(
− ∆2

2

)
,

where Φ(·) is the standard normal distribution function, ∆1,∆2 are defined in (13).

Proof. According to (6) the conditional misclassification probabilities are:

r1 = Pr{d(X) 6= ν | ν = 1} = 1− Pr{Λ(X) < 0 | ν = 1},
r2 = Pr{d(X) 6= ν | ν = 2} = Pr{Λ(X) < 0 | ν = 2}.

Let us find the probability distribution of Λ(X) defined by (7).
Consider first the summand Λ∗(X) of Λ(X). From (7) we see that Λ∗(X) is

a linear combination of the random variables {Π̂ij}. It is known [2] that if the
observation X belongs to the class Ωl then the statistics ξ

(l)
ij =

√
n(Π̂ij−Π(l)

ij ) have
the asymptotically normal probability distribution with zero means and covariances
Cov{ξ(l)

ij , ξ
(l)
uv} = s

(l)
ijuv defined by (10), where Π(l)

ij = π
(l)
i p

(l)
ij . Therefore the condi-

tional distribution of Λ∗(X) is also asymptotically normal. The asymptotic mean
of Λ∗(X) obtains as a linear combination of the means of {Π̂ij} and is equal to
(−1)lal. The asymptotic variance of Λ∗(X) is a quadratic form of {s(l)

ijuv}, and
taking into account the norming condition for {Πij} the asymptotic variance is

σ2
l =

∑

(i,j),(u,v)∈AΠ

log
p
(2)
ij

p
(1)
ij

p
(1)
NN

p
(2)
NN

log
p
(2)
uv

p
(1)
uv

p
(1)
NN

p
(2)
NN

s
(l)
ijuv > 0.

Note that σ2
l > 0 because the covariance matrices {s(l)

ijuv, (i, j), (u, v) ∈ AΠ} are
nonsingular [2] and P (1) 6= P (2). Under the contiguous classes asymptotics (8) σ2

l

can be presented as

(14) σ2
l = ε2

∑

(i,j),(u,v)∈AΠ

(bij − bNN )s(l)
ijuv(buv − bNN ) + O

(
ε3

)
.

Consider the last summand of Λ(X) in (7): ζ = n−1 log(π(2)
x1 /π

(1)
x1 ). Now we get

Pr{Λ(X) < 0 | ν = l} = Pr
{

Λ∗(X) +
1
n

log
q2

q1
+ ζ < 0 | ν = l

}

= Pr
{√

n
Λ∗(X)− (−1)lal

σl
+
√

nζ

σl
< −√n

(−1)lal

σl
− 1√

nσl
log

q2

q1
| ν = l

}
.
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We see from Lemma 1 and (14) that ζ = OP (ε/n),

√
n

al

σl
=
√

n
1
2ε2

∑
i,j∈A b2

ijπ
(l)
i p

(1)
ij + O

(
ε3

)
√

ε2
∑

(i,j),(u,v)∈AΠ
(bij − bNN )s(l)

ijuv(buv − bNN ) + O (ε3)
,

log(q2/q1)√
nσl

=
log(q2/q1)

√
n
√

ε2
∑

(i,j),(u,v)∈AΠ
(bij − bNN )s(l)

ijuv(buv − bNN ) + O (ε3)
,

−√n
(−1)lal

σl
− log(q2/q1)√

nσl
→ −(−1)l ∆

2
− log(q2/q1)

c
√

V
,

and
√

nζ/σl = OP (n−1/2) → 0 in probability. Using the well-known result [18] (see
Theorem 15) on convergence in distribution for the sum of

√
nζ/σl, which converges

to 0 in probability, and Λ∗(X), which has an asymptotically normal distribution,
we get

r1 = 1− Pr{Λ(X) < 0 | ν = 1} → 1− Φ
(

∆
2
− log(q2/q1)

c
√

V

)
= Φ

(
− ∆1

2

)
,

r2 = Pr{Λ(X) < 0 | ν = 2} → Φ
(
− ∆

2
− log(q2/q1)

c
√

V

)
= Φ

(
− ∆2

2

)
,

and r0 = q1r1 + q2r2 → r̃0. ¤
Corollary 2. If the classes are equiprobable (q1 = q2 = 1

2 ) then the limiting
value of the risk is r̃0 = Φ(−∆/2).

Remark 1. Taking into account the proof of Theorem 2, in the asymptotics (8)
the BDR (5) is equivalent to the decision rule

d(X) = arg max
1≤l≤L

(
1
n

log ql +
∑

i,j∈A
Π̂ij log p

(l)
ij

)
, X ∈ An.

3. The Case of Unknown Parameters
3.1. Plug-in DR and its risk. If the parameters of the classes (1) are

unknown then a classified “training sample” is assumed to be observed:

X = {X(1), X(2), . . . , X(L)},(15)

X(l) = (x(l)
1 , x

(l)
2 , . . . , x(l)

nl
), x

(l)
t ∈ A, t ∈ {1, . . . , nl},

where X(l) is a realization of length nl of the Markov chain from the class Ωl,
l ∈ {1, . . . , L}. It is assumed that X and X(1), . . . , X(L) are jointly independent.

The ML-estimators of the unknown matrices of one-step transition probabilities
P (l) can be calculated from the “training sample”:

P̂ (l) = (p̂(l)
ij ) : p̂

(l)
ij =

n
(l)
ij

n
(l)
i·

, i, j ∈ A, l ∈ {1, . . . , L},

n
(l)
ij =

nl−1∑
t=1

I{x(l)
t = i, x

(l)
t+1 = j}, n

(l)
i· =

∑

j∈A
n

(l)
ij .
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Because of the norming condition for the probabilities {p(l)
ij } we consider only

{p(l)
ij , (i, j) ∈ AP } as unknown parameters to be estimated, where AP = {(i, j) :

i ∈ A, j ∈ A \ {N}}; p
(l)
iN = 1−∑N−1

j=1 p
(l)
ij .

The plug-in Bayesian decision rule (PBDR) is obtained from the BDR (5) if the
unknown parameters {P (l)} are replaced by their ML-estimators {P̂ (l)}:

dPBDR(X,X) = arg max
1≤l≤L

(
1
n

log ql +
1
n

log π̂(l)
x1

+
∑

i,j∈A
Π̂ij log p̂

(l)
ij

)
,

where π̂
(l)
i = n

(l)
i· /n. In case of two classes the PBDR can be represented as

dPBDR(X,X) = 1
(
Λ̂(X,X)

)
+ 1,(16)

Λ̂(X,X) = Λ̂∗(X,X) +
1
n

log
q2

q1
+

1
n

log
π̂

(2)
x1

π̂
(1)
x1

, Λ̂∗(X,X) =
∑

i,j∈A
Π̂ij log

p̂
(2)
ij

p̂
(1)
ij

.

Theorem 3. For increasing number of observations n, n1, n2 and two contigu-
ous classes (8):

(17) n, nl →∞, nl/n = λ̃l > 0, l = 1, 2; ε = cn−1/2 → 0, 0 < c < ∞,

the misclassification probability (4) of the PBDR (16) has the limit:

r → r̃ = q1Φ
(
− ∆̃1

2

)
+ q2Φ

(
− ∆̃2

2

)
,

∆̃l =
cµ√

V + Ṽl

+ (−1)l 2 log(q2/q1)

c

√
V + Ṽl

,(18)

Ṽl =
1

λ̃3−l

∑

(i,j),(u,v)∈AP

π
(1)
i π(1)

u (bij − biN )(buv − buN )σ(1)
ijuv > 0,

where µ, V are defined in (12), the covariances {σ(1)
ijuv} are defined in (11).

Proof. Consider the event Z = {n(l)
ij 6= 0, l ∈ {1, 2}, i, j ∈ A}. The PBDR

is defined only if the event Z occurs. Put dPBDR(X,X) = 0 if the complement
Z̄ of the event Z occurs. Consider the conditional misclassification probabilities
rl = Pr{dPBDR(X,X) 6= ν | ν = l}, l ∈ {1, 2}:

rl = Pr{{dPBDR(X,X) 6= ν} ∩ Z | ν = l}+ Pr{{dPBDR(X,X) 6= ν} ∩ Z̄ | ν = l}.

Since the Markov chains are stationary (with π
(l)
i > 0, i ∈ A) and recurrent,

taking into account assumption (2), in the asymptotics of increasing number of
observations we get Pr{Z̄} → 0 and Pr{{dPBDR(X,X) 6= ν} ∩ Z̄ | ν = l} → 0.
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Consider now the summand Pr{{dPBDR(X,X) 6= ν} ∩ Z | ν = l} and find the
probability distribution of the statistic Λ̂(X,X).

Consider first the summand Λ̂∗(X,X) of Λ̂(X,X). Suppose the realization X

belongs to the class Ωl. It is seen from (16) that Λ̂∗(X,X) is a function of the
estimators of one-step transition probabilities and the estimators of the bivari-
ate probabilities: Λ̂∗(X,X) = f(P̂ (1), P̂ (2), Π̂). It is known [2] that the statistics
θ
(l)
ij =

√
nl(p̂

(l)
ij − p

(l)
ij ) =

√
λ̃ln(p̂(l)

ij − p
(l)
ij ) are asymptotically normal with zero

means and covariances Cov{θ(l)
ij , θ

(l)
uv} = σ

(l)
ijuv defined by (11), and the statistics

ξ
(l)
ij =

√
n

(
Π̂ij −Π(l)

ij

)
are asymptotically normal with zero means and covariances

Cov{ξ(l)
ij , ξ

(l)
uv} = s

(l)
ijuv defined by (10), Π(l)

ij = π
(l)
i p

(l)
ij , i, j, u, v ∈ A. Furthermore,

independence of X, X(1), X(2) implies independence of the statistics {ξ(l)
ij }, {θ(1)

ij },
{θ(2)

ij }. By the Anderson theorem [20] on functional transformations of asymptoti-
cally normal random variables, it follows that Λ̂∗(X,X) has asymptotically normal
distribution

L
{√

n
Λ̂∗(X,X)− (−1)lal

σ̃l
| ν = l

}
→ N (0, 1)

with the mean of the form f
(
E {P̂ (1)}, E {P̂ (2)},E {Π̂}), which is equal to (−1)lal

(see (9)), and the variance σ̃2
l being the following quadratic form of the covariance

matrices (σ(l)
ijuv/λ̃l), (s(l)

ijuv) and a vector of partial derivatives of f [20]:

σ̃2
l =

∑

(i,j),(u,v)∈AP

∂f

∂p̂
(1)
ij

∂f

∂p̂
(1)
uv

σ
(1)
ijuv

λ̃1

+
∑

(i,j),(u,v)∈AP

∂f

∂p̂
(2)
ij

∂f

∂p̂
(2)
uv

σ
(2)
ijuv

λ̃2

+
∑

(i,j),(u,v)∈AΠ

∂f

∂Π̂ij

∂f

∂Π̂uv

s
(l)
ijuv

=
∑

(i,j),(u,v)∈AP

(
π

(l)
i p

(l)
ij

p
(1)
ij

− π
(l)
i p

(l)
iN

p
(1)
iN

)(
π

(l)
u p

(l)
uv

p
(1)
uv

− π
(l)
u p

(l)
uN

p
(1)
uN

)
σ

(1)
ijuv

λ̃1

+
∑

(i,j),(u,v)∈AP

(
π

(l)
i p

(l)
ij

p
(2)
ij

− π
(l)
i p

(l)
iN

p
(2)
iN

)(
π

(l)
u p

(l)
uv

p
(2)
uv

− π
(l)
u p

(l)
uN

p
(2)
uN

)
σ

(2)
ijuv

λ̃2

+
∑

(i,j),(u,v)∈AΠ

log
p
(2)
ij

p
(1)
ij

p
(1)
NN

p
(2)
NN

log
p
(2)
uv

p
(1)
uv

p
(1)
NN

p
(2)
NN

s
(l)
ijuv.

We have σ̃2
l > 0 because ∇f(P (1), P (2),Π) 6= 0 and the covariance matrices {s(l)

ijuv,

(i, j), (u, v) ∈ AΠ}, {σ(l)
ijuv, (i, j), (u, v) ∈ AP } are nonsingular, l ∈ {1, 2}.

Under the contiguous classes asymptotics (8) σ̃2
l can be represented as

σ̃2
l =

ε2

λ̃3−l

∑

(i,j),(u,v)∈AP

π
(l)
i π(l)

u (bij − biN )(buv − buN )σ(l)
ijuv(19)

+ ε2
∑

(i,j),(u,v)∈AΠ

(bij − bNN )(buv − bNN )s(l)
ijuv + O

(
ε3

)
.
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Using Lemma 1, (17), and (19) we get

√
n

al

σ̃l
→ cµ

2
√

V + Ṽl

,
log q2/q1√

nσ̃l
→ log(q2/q1)

c

√
V + Ṽl

.

Consider the summand ζ̂ = n−1 log(π̂(2)
x1 /π̂

(1)
x1 ) of Λ̂(X,X). The estimators of the

stationary distributions are consistent (π̂(l)
i → π

(l)
i > 0 in probability, i ∈ A) and

ζ̂ is analyzed in the same way as in the proof of Theorem 2. The rest of the proof
follows the lines of the proof of Theorem 2. ¤

Remark 2. If n1, n2 increase faster than n, so that λ̃1, λ̃2 →∞, then Ṽ1, Ṽ2 → 0
and the limiting value of the PBDR risk converges to the limiting value of the
Bayesian risk: r̃ → r̃0.

3.2. Asymptotic expansion of the risk of PBDR. Now we shall
investigate convergence of the PBDR risk to the BDR risk as n1, n2 → ∞ for a
fixed n in case of two classes (L = 2). Consider the difficult for discrimination case,
where the classes are equiprobable (q1 = q2 = 1

2 ).
Let us introduce some notation: Λ̃(X) = q2L2(X)− q1L1(X) is the discriminant

function based on the likelihood functions of the classes; Ll(X) is the likelihood
function of the parameters of the class Ωl for the realization X:

Ll(X) = π(l)
x1

∏

i,j∈A
(p(l)

ij )nij(X),

where nij(X) is the bivariate frequency calculated from the realization X, i, j ∈ A.
Taking into account the expressions for the conditional misclassification probabili-
ties:

r1 = Pr{dBDR(X) = 2 | ν = 1} =
∑

X∈An

L1(X)1 (Λ(X)) ,

r2 = 1− Pr{dBDR(X) = 2 | ν = 2} = 1−
∑

X∈An

L2(X)1 (Λ(X)) ,

we get the exact value of the BDR risk in the form:

(20) r0 = q1r1 + q2r2 = q2 −
∑

X∈An

Λ̃(X)1 (Λ(X)) = q2 −
∑

X∈An,Λ(X)≥0

Λ̃(X).

Averaging the risk rPBDR(X) of the PBDR dPBDR(·,X) over the “training sam-
ple” (15) we obtain the exact value of the (unconditional) risk of the PBDR:

(21) r = q2 −
∑

X∈An

Λ̃(X)E
{
1(Λ̂(X,X))

}
.

One can see that the discriminant functions Λ̂(X,X) and Λ(X) depend on the
one-step transition probabilities and the stationary distributions. Let us represent



10 Yu. Kharin and A. Kostevich

the discriminant functions as functions of the bivariate probabilities only, which are
determined by the one-step transition probabilities and the stationary distributions:

Λ̂(X,X) =
∑

i,j∈A

nij(X)
n

log
Π̂(2)

ij

Π̂(1)
ij

−
∑

i∈A

(ni·(X)− δix1)
n

log
Π̂(2)

i·
Π̂(1)

i·
,

Λ(X) =
∑

i,j∈A

nij(X)
n

log
Π(2)

ij

Π(1)
ij

−
∑

i∈A

(ni·(X)− δix1)
n

log
Π(2)

i·
Π(1)

i·
,

Π̂(l) =
(
Π̂(l)

ij

)
: Π̂(l)

ij =
n

(l)
ij

nl
, Π(l) =

(
Π(l)

ij

)
: Π(l)

ij = π
(l)
i p

(l)
ij , i, j ∈ A,

where Π̂(l)
i· =

∑
j∈A Π̂(l)

ij , Π(l)
i· =

∑
j∈AΠ(l)

ij , l ∈ {1, 2}.
Introduce the notation:

Bn(X) =
∑

i,j∈A

nij(X)
n

bij +
∑

i∈A

δix1

n
hi,

Dn(X) =
λ1 + λ2

λ1λ2

∑

(i,j),(u,v)∈AΠ

g
(1)
ij (X)g(1)

uv (X)s(1)
ijuv,

g
(l)
ij (X) =

1
n

(
nij(X)

Π(l)
ij

− nNN (X)

Π(l)
NN

)
− 1

n

(
ni·(X)

Π(l)
i·

− nN ·(X)

Π(l)
N ·

)
,

A(l) =
{

X ∈ An : g(l)(X) = 0
}

, g(l)(X) =
(
g
(l)
ij (X)

)
, (i, j) ∈ AΠ,

where {hi} are as in Lemma 1, λ1, λ2 > 0; the function g
(l)
ij (X) is the partial

derivative of Λ̂(X,X) with respect to Π̂(l)
ij at Π̂(1) = Π(1), Π̂(2) = Π(2), l ∈ {1, 2}.

Theorem 4. Assume that the classes are equiprobable (q1 = q2 = 1
2 ), n∗ =

min{n1, n2}, n is fixed. Under the contiguous classes asymptotics (8) and increasing
lengths of realizations from the “training sample”:

(22) n∗ →∞, nl/n∗ = λl > 0, l ∈ {1, 2}, ε = cn
−1/2
∗ → 0, 0 < c < ∞,

the following expansion for the increment of the PBDR risk holds:

r = r0 +
c̃√
n∗

+ o

(
1√
n∗

)
,(23)

c̃ =
cn

2

∑

X∈An\A(1)

L1(X)Bn(X)Φ (−|∆(X)|) > 0, ∆(X) =
cBn(X)√

Dn(X)
.

Proof. The discriminant function Λ̂(X,X) is a function of the statistics Π̂(1),
Π̂(2): Λ̂ = g(Π̂(1), Π̂(2)). The statistics {√n

(
Π̂(l)

ij − Π(l)
ij

)} are asymptotically nor-
mally distributed (see the proof of Theorem 3). By the Anderson theorem [20] on
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functional transformations of asymptotically normal random variables, it follows
that the discriminant function Λ̂(X,X) has the asymptotically normal distribution

L
{√

n∗
Λ̂(X,X)− Λ(X)

σ(X)

}
→ N (0, 1),

where the mean obtains as g(E {Π̂(1)},E {Π̂(2)}) and is equal to Λ(X) and the
variance σ2(X) is given by the following quadratic form of the covariance matrices
(s(l)

ijuv/λl) and the vector of partial derivatives g(l)(X) [20]:

σ2(X) =
∑

(i,j),(u,v)∈AΠ

g
(1)
ij (X)g(1)

uv (X)
s
(1)
ijuv

λ1
+

∑

(i,j),(u,v)∈AΠ

g
(2)
ij (X)g(2)

uv (X)
s
(2)
ijuv

λ2
.

Under the contiguous classes asymptotics (8) we get Π(2)
ij = Π(1)

ij (1 + ε(bij +
hi)) + O

(
ε2

)
. Construct the Taylor expansion of Λ(X) and σ2(X).

Consider first the case X ∈ An \A(1)∪A(2), i.e., nij(X) 6= ni·(X)p(l)
ij , l ∈ {1, 2}.

Then the Taylor expansion of Λ(X) and σ2(X) for any fixed X gives

Λ(X) = εBn(X) + O
(
ε2

)
, σ2(X) = Dn(X) + O (ε) ,

where Bn(X) = O (1), Dn(X) = O (1). We have Dn(X) > 0 because g(1)(X) 6= 0,
and the covariance matrix {s(1)

ijuv, (i, j), (u, v) ∈ AΠ} is nonsingular.

Consider now the case X ∈ A(1), i.e., nij(X) = ni·(X)p(1)
ij . Taking into account

the norming condition
∑

j∈A p
(1)
ij bij = 0, the Taylor expansion of Λ(X) and σ2(X)

gives

Λ(X) = ε
∑

i∈A

δix1

n
hi + O

(
ε2

)
,

σ2(X) = ε2
∑

(i,j),(u,v)∈AΠ

(
ni·(X)

nπ
(1)
i

bij +
nN ·(X)

nπ
(1)
N

bNN

)

×
(

nu·(X)

nπ
(1)
u

buv +
nN ·(X)

nπ
(1)
N

bNN

)
s
(2)
ijuv

λ2
+ O

(
ε3

)
.

We have σ2(X) > 0 because the covariance matrix {s(2)
ijuv, (i, j), (u, v) ∈ AΠ} is

nonsingular.
The case X ∈ A(2) can be considered in the same way.
So, under the asymptotics (8), (22) we get

√
n∗

Λ(X)
σ(X)

→ ∆∗(X) =
{

∆(X), if X ∈ An \ A(1) ∪ A(2),

sign(Λ(X)) · ∞, if X ∈ A(1) ∪ A(2).
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Then under the conditions of the theorem the expectation in (21) satisfies the
asymptotics:

E
{
1

(
Λ̂(X,X)

)}
= 1− Pr

{
Λ̂(X,X) < 0

}

= 1− Pr
{√

n∗
Λ̂(X,X)− Λ(X)

σ(X)
< −√n∗

Λ(X)
σ(X)

}
→ 1− Φ(−∆∗(X)) .

Combining this with (21) and taking into account that n is fixed and Φ (∆∗(X)) =
1− Φ(−∆∗(X)), we have:

r =
1
2
−

∑

X∈An

Λ̃(X)Φ (∆∗(X)) + o (1)

=
1
2
−

∑

X∈An,
Λ(X)≥0

Λ̃(X) +
∑

X∈An,
Λ(X)≥0

Λ̃(X)−
∑

X∈An

Λ̃(X)Φ (∆∗(X)) + o (1)

= r0 +
∑

X∈An,
Λ(X)≥0

Λ̃(X) (1− Φ (∆∗(X)))−
∑

X∈An,
Λ(X)<0

Λ̃(X)Φ (∆∗(X)) + o (1) .

Since sign(Λ̃(X)) = sign(Λ(X)) = sign(∆∗(X)) for any X ∈ An, we get:

∑

X∈An, Λ(X)≥0

Λ̃(X) (1− Φ (∆∗(X)))

=
∑

X 6∈A(1)∪A(2),
Λ(X)≥0

|Λ̃(X)|Φ(−|∆(X)|) +
∑

X∈A(1)∪A(2),
Λ(X)≥0

|Λ̃(X)|Φ(−|∆∗(X)|) ,

∑

X∈An, Λ(X)<0

Λ̃(X)Φ (∆∗(X))

=
∑

X 6∈A(1)∪A(2),
Λ(X)<0

−|Λ̃(X)|Φ(−|∆(X)|)−
∑

X∈A(1)∪A(2),
Λ(X)<0

|Λ̃(X)|Φ(−|∆∗(X)|) ,

and Φ (−|∆∗(X)|) = 0 for any X ∈ A(1) ∪ A(2). So, we obtain:

(24) r = r0 +
∑

X 6∈A(1)∪A(2)

|Λ̃(X)|Φ(−|∆(X)|) + o (1) .

Now we consider |Λ̃(X)| = 1
2 |L2(X) − L1(X)|. Using the Taylor expansion

Λ(X) = εBn(X) + O
(
ε2

)
for X 6∈ A(1) ∪ A(2) we obtain:

|Λ̃(X)| = L1(X)
2

∣∣∣∣
L2(X)
L1(X)

− 1
∣∣∣∣ =

L1(X)
2

∣∣enΛ(X)− 1
∣∣ =

nL1(X)
2

∣∣εBn(X) + O
(
ε2

)∣∣ .
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Putting this expansion into (24), omitting the terms of order O
(
ε2

)
, and substi-

tuting ε = c/
√

n∗ we obtain (23). ¤
4. Discriminant Analysis of Markov Chains with Missing Values
Let there be missing values in the realization X = (x1, . . . , xn) of the Markov

chain under classification. We use the vector M of missing value indicators in order
to indicate the location of missing values in the realization X:

(25) M = (m1,m2, . . . , mn), mt ∈ {0, 1}, t ∈ {1, . . . , n},

that is assumed to be known and fixed. Here mt = 0 means that the observation
xt is missing, mt = 1 means that the value xt is registered (m1 ≡ mn ≡ 1). The
vector M determines the model of data registration, in some sense it determines
the experimental design. There are two approaches to describe the missing-data
mechanisms [14]: the probabilistic model of M assuming that m1,m2, . . . is a
random sequence (e.g., Bernoulli trials, a Markov chain) and the deterministic
model assuming that M is a nonrandom parameter of the data registration process.
In this paper we follow the second approach.

4.1. The likelihood function for a Markov chain with missing
values. Let T be the number of fragments without missing values in the realization
X, so T is equal to the number of series of ones in the vector M (T ≥ 2). Let us
represent (X, M) in the following form:

X = (x1, . . . , xn) =
(
X(1)

... X(1)

... X(2)

... . . .
... X(T−1)

... X(T )

)
,

X(t) =
(
x(t),1, x(t),2, . . . , x(t),M∗

t

)
, t ∈ {1, . . . , T},

where X(t) is the tth observed fragment of length M∗
t of the realization X that

corresponds to the tth series of ones in M ; X(s) is the sth missing fragment of
length M

∗
s of the realization X that corresponds to the tth series of zeroes in M .

Theorem 5. The likelihood function of the Markov chain parameters (π, P ) for
the realization with missing values (X, M) is:

(26) L(π, P ; X, M) = πx(1),1

( T∏
t=1

Lt(P, X(t))
)( T−1∏

t=1

px(t),M∗
t

,x(t+1),1(M
∗
t + 1)

)
,

where pij(k) = (P k)ij is the probability of the k-step transition from the state i to
the state j; Ls(P, X(s)) is the probability of the fragment X(s) given the fixed first
state x(s),1:

(27) Ls = Ls(P ; X(s)) =
M∗

s−1∏
t=1

px(s),t,x(s),t+1 .

Proof. One can see that the observed fragments of the realization (X, M) form
the non-homogeneous Markov chain with the transition probabilities depending on
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M [6]: the probability of the transition from xt to xt+1 with mt = mt+1 = 1 is equal
to the probability of one-step transition pxtxt+1 ; the probability of the transition
from xt to xt+k with mt = mt+k = 1 and k− 1 consecutive missing observations in
between (mt+1 = . . . = mt+k−1 = 0) is equal to the probability of k-step transition
pxtxt+k

(k) calculated from the Kolmogorov-Chapman equation. ¤
One can see from (26) that the likelihood function is a complicated nonlinear

function of the transition probabilities {pij}. Let us construct an approximation of
the likelihood function (26).

Let M
∗
− = min1≤t≤T−1 M

∗
t be the minimal length of the series of missing values

in the realization X.

Theorem 6. If the stationary Markov chain with parameters (π, P ) is observed
with missing values (25), and there exists a positive integer M0 such that

M
∗
− ≥ M0, ρ = 1− min

i,j∈A
pij(M0) < 1,

then the following multiplicative approximation of the likelihood function (26) by
likelihood functions for fragments without missing values {L(π, P ; X(t))} is valid:

L(π, P ;X,M) =
T∏

t=1

L(π, P ;X(t)) + δ(π, P ;X,M),(28)

∣∣∣∣
δ(π, P ; X, M)
L(π, P ;X,M)

∣∣∣∣ = O
(
TρM

∗
−/M0

)
,

where L(π, P ;X(t)) = πx(t),1Lt(P ;X(t)), Lt(·; ·) is defined in (27).

Proof. Consider the case of one missing fragment
(
X = (X(1)

... X(1)

... X(2)),
T = 2

)
and evaluate the approximation accuracy δ(π, P ; X, M):

|δ(π, P ; X, M)| =
∣∣∣L(π, P ; X, M)− L(π, P ; X(1))L(π, P ; X(2))

∣∣∣

=
∣∣∣πx(1),1L1L2px(1),M∗

1
,x(2),1(M

∗
− + 1)− L(π, P ;X(1))L(π, P ; X(2))

∣∣∣

=
∣∣∣πx(1),1L1L2

(
px(1),M∗

1
,x(2),1(M

∗
− + 1)− πx(2),1 + πx(2),1

)− πx(1),1L1πx(2),1L2

∣∣∣
= πx(1),1L1L2|px(1),M∗

1
,x(2),1(M

∗
− + 1)− πx(2),1 |.

Using the inequality |px(1),M∗
1

,x(2),1(M
∗
− + 1) − πx(2),1 | ≤ cρ[(M

∗
−+1)/M0]−1 (see [3]),

we get: ∣∣∣∣
δ(π, P ;X,M)
L(π, P ; X, M)

∣∣∣∣ ≤
c

px(1),M∗
1

,x(2),1(M
∗
− + 1)

ρ[(M
∗
−+1)/M0]−1.

The case T > 2 is considered in a similar way. ¤
Remark 3. By (2) one can take M0 = 1 and ρ = 1−mini,j∈A pij , ρ ∈ (0, 1).
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We will use the asymptotics of increasing lengths of series of missing values:
M

∗
− →∞. In practice, this asymptotics corresponds to “switches” of the observer

for long time periods between registration of the realization X and registration
of other realizations. Note that under the probabilistic approach to missing-data
mechanism [14], the vector M can be generated as a realization of a binary Markov
chain with “attraction”: Pr{mt+1 = 1 | mt = 1} and Pr{mt+1 = 0 | mt = 0} are
close to 1.

Corollary 3. Under the assumptions of Theorem 6 and asymptotics of increas-
ing number of series and increasing lengths of series of missing values,

(29) T →∞, M
∗
− →∞, TρM

∗
− → 0,

the following almost sure convergence holds:
∣∣∣∣
δ(π, P ; X, M)
L(π, P ;X,M)

∣∣∣∣ → 0.

Thus under the conditions of Corollary 3 the fragments without missing values
of the realization X may be interpreted as a set of independent “subrealizations”
that are described by the same model of the Markov chain but without missing
values.

Let us assume that the asymptotics (29) holds and so the approximation er-
ror in (28) may be neglected. Therefore we shall use the following multiplicative
approximation:

(30) L(π, P ; X, M) =
T∏

t=1

L(π, P ;X(t)).

This enables us to use the results of Sections 2 and 3 of this paper in case of missing
values.

4.2. A decision rule in case of known parameters of the classes.
The approximation (30) under the assumption (29) enables us to generalize the
results of Section 2 for the case of missing values in the realization X under classi-
fication.

Let M∗ =
∑T

t=1 M∗
t be the total number of registered observations in the real-

ization with missing values (X, M).

Theorem 7. Under the asymptotics

(31) M∗, T,M
∗
− →∞, Tρ

M
∗
−

l → 0, l ∈ {1, . . . , L},
the BDR using the approximated likelihood functions for the model (1), (3), (25) is:

d(X) = arg max
1≤l≤L

(
1

M∗ log ql +
1

M∗
∑

i∈A
νi log π

(l)
i +

∑

i,j∈A
Π̂ij log p

(l)
ij

)
,(32)

Π̂ij =
nij

M∗ , nij =
n−1∑
t=1

mtmt+1 · I{xt = i, xt+1 = j}, νi =
T∑

t=1

I{x(t),1 = i},
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where i, j ∈ A, ρl = 1−mini,j∈A p
(l)
ij .

Proof. The proof follows the lines of the proof of Theorem 1 using the approxi-
mate likelihood function (30). ¤

Let us now find the misclassification probability (4) of the BDR (32) in the case
of two classes (L = 2).

Theorem 8. For L = 2 under the asymptotics (31) and the contiguous classes
asymptotics (8),

ε =
c√
M∗ → 0, T ε → 0, 0 < c < ∞,

the misclassification probability (4) of the BDR (32) has the limit:

r0 → r̃0 = q1Φ
(
− ∆1

2

)
+ q2Φ

(
− ∆2

2

)
,

where ∆1, ∆2 are defined in (13).

Proof. One can see that under the conditions of the theorem the approxima-
tion (30) of the likelihood function for the realization (X, M) is valid. Therefore
the statistical estimators {Π̂ij} from “incomplete” data have the same asymptotic
properties as statistical estimators from “full” data. The proof follows the lines of
the proof of Theorem 2. ¤

4.3. A decision rule in case of unknown parameters of the
classes. Consider the case where the parameters of the classes (1) are unknown
and the “training sample” X is observed also with missing values:

X =
{
(X(1),M (1)), (X(2),M (2)), . . . , (X(L),M (L))

}
,

where for each lth realization X(l) of length nl from the class Ωl there is the
corresponding vector of miss-indicators M (l) =

(
m

(l)
1 ,m

(l)
2 , . . . , m

(l)
nl

)
, m

(l)
t ∈ {0, 1},

t ∈ {1, . . . , nl}, l ∈ {1, . . . , L}.
Let Tl be the number of fragments without missing values in the realization

X(l) (Tl ≥ 2). Let X
(l)
(t) be the tth observed fragment of the realization X(l) that

corresponds to the tth series of ones in M (l); let M∗
(l),t denote the length of X

(l)
(t);

let X
(l)

(s) be the sth missing fragment of the realization X(l) that corresponds to the

sth series of zeroes in M (l); let M
∗
(l),t denote the length of X

(l)

(t), t ∈ {1, . . . , Tl},
s ∈ {1, . . . , Tl − 1}, l ∈ {1, . . . , L}. Let M∗

(l) =
∑Tl

t=1 M∗
(l),t be the number of

registered observations in the realization X(l); let M
∗
(l),− = min1≤t≤Tl−1 M

∗
(l),t

denote the minimal length of the fragment of missing values in the realization X(l),
l ∈ {1, . . . , L}.

The asymptotics

(33) Tl →∞, M
∗
(l),− →∞, Tlρ

M
∗
(l),−

l → 0, l ∈ {1, . . . , L},
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enables us to use the approximation (30) of the likelihood functions for all realiza-
tions from X.

As in Section 3 we shall use the plug-in DR that is obtained from the BDR (32)
if the unknown parameters {P (l)} are replaced by their estimators {P̂ (l)}:

d(X,X) = arg max
1≤l≤L

(
1

M∗ log ql +
1

M∗
∑

i∈A
νi log π̂

(l)
i +

∑

i,j∈A
Π̂ij log p̂

(l)
ij

)
,(34)

Π̂ij =
nij

M∗ , nij =
n−1∑
t=1

mtmt+1 · I{xt = i, xt+1 = j},

p̂
(l)
ij =

n
(l)
ij

n
(l)
i·

, π̂
(l)
i =

n
(l)
i·
nl

, n
(l)
ij =

nl−1∑
t=1

m
(l)
t m

(l)
t+1 · I{x(l)

t = i, x
(l)
t+1 = j},

where the bivariate frequencies {n(l)
ij } are calculated from the observed fragments

of the realization X(l), i, j ∈ A, l ∈ {1, . . . , L}.
Let us find now the misclassification probability (4) of the DR (34) in the case

of two classes (L = 2).

Theorem 9. For L = 2 under the asymptotics (31), (33), and the contiguous
classes asymptotics (8),

M∗
(l) →∞, M∗

(l)/M
∗ = λ̃l > 0, ε =

c√
M∗ → 0, T ε → 0, 0 < c < ∞,

the misclassification probability (4) of the DR (34) has the limit:

r → r̃ = q1Φ
(
− ∆̃1

2

)
+ q2Φ

(
− ∆̃2

2

)
,

where ∆̃1, ∆̃2 are defined in (18).

Proof. One can see that under the conditions of the theorem the approximation
(30) of the likelihood functions for the realizations (X, M), (X(l),M (l)) is valid.
Therefore the statistical estimators {Π̂ij} and {p̂(l)

ij } from “incomplete” data have
the same asymptotic properties as statistical estimators from “full” data. The proof
follows the lines of the proof of Theorem 3. ¤

5. Conclusion
In this paper the classification statistical problem for stationary finite Markov

chains is considered for different levels of prior information: the Bayesian decision
rule and the plug-in Bayesian decision rule are constructed and their performance
is evaluated in the case of two contiguous classes and increasing number of obser-
vations.

The obtained results are generalized to the case of missing values in realizations
to be classified and in “training samples”.
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